an increase in the energy of ligand field states, this nonproductive deactivation channel is removed and the efficiency of photosensitization is greatly increased.

Using these two criteria, it should be possible to design many Magnus-type materials that will be photoactive. Whether photoactivity is merely a result of light absorbed by surface chromophores or whether cooperative electronic structure allows transfer of excitons (or perhaps conduction-band electrons) from the bulk to the surface is a question of central importance to the study of these materials. From a theoretical viewpoint³² it is very likely that some variation of an exciton model applies to the d \rightarrow p states of d⁸ linear-chain materials, and therefore bulk excitation is mobile. This study demonstrates that excitation can be harvested at the solid-liquid interface in redox processes. We

(32) Day, P. Reference 7c, Chapter 7.

are currently attempting to grow large single crystals of PBC in order to study the photoconductivity and other electrical properties of this material.

Acknowledgment. We thank Carl Craig and Professor Richard J. Watts at the University of California, Santa Barbara, CA, for lifetime and emission data, Dr. John S. Connolly at SERI for access to equipment in his laboratory and assistance with nanosecond lifetime measurements, Alex Miedaner at SERI for the synthesis of $Pt(bpy)_2^{2+}$ and $Pt(bpy)(MHB)^{2+}$, and Dr. Vincent Miskowski at the Jet Propulsion Laboratory for many helpful discussions. This work was supported by Contract No. 5083-260-0796 from the Gas Research Institute.

Registry No. [Pt(NH₃)₄][PtCl₄], 13820-46-7; [Pt(bpy)₂][PtCl₄], 54822-44-5; [Pt(bpy)(MHB)][PtCl₄], 98064-84-7; [Pt(bpy)₂][Pt(CN₄]], 54806-40-5; [Pt(bpy)(MHB)][Pt(CN)₄], 98064-85-8; H₂O, 7732-18-5; H₂, 1333-74-0; Pt, 7440-06-4.

Contribution from the Departments of Chemistry, Portland State University, Portland, Oregon 97207, and University of Idaho, Moscow, Idaho 83843

Synthesis and Spectroscopic Properties of Ethynylsulfur Pentafluoride (SF₅C=CH)

JO ANN M. CANICH, MARIA M. LUDVIG, WILLIAM W. PAUDLER, GARY L. GARD,* and JEAN'NE M. SHREEVE*

Received February 25, 1985

Ethynylsulfur pentafluoride, SF₅C=CH, has been prepared by the dehydrobromination of SF₅CH=CFBr (49%). It also can be obtained in a four-step process by the addition of SF₅Br to acetylene, followed by bromination of the resulting olefin, SF₅C-H=CHBr, to form SF₅CHBrCHBr₂, which may be dehydrobrominated with K₂CO₃ to give SF₅CBr=CHBr. The latter, when treated with Zn, gives SF₅C=CH in an overall yield of 9%.

Introduction

It is known that the introduction of SF₅ groups into molecular systems can bring about significant changes in their physical, chemical, and biological properties. These properties are manifested by various applications, such as solvents for polymers, as perfluorinated blood substitutes, as surface-active agents, as fumigants, and as thermally and chemically stable systems.¹ The synthesis and chemistry of these compounds are the subjects of ongoing studies. One compound of particular interest is ethynylsulfur pentafluoride (SF₅C=CH) which has been used as the starting reagent for a number of novel and interesting derivatives that include saturated ethers, vinyl ethers, pyrazoles, cyclic alkenes, and alkyl-substituted phenylsulfur pentafluorides.² In addition, SF₅C=CH is found to be useful in preparing a number of SF₅-containing alkenes and alkynes.^{2,3}

Results and Discussion

The original synthesis of SF_5C —CH involves four steps, starting with pentafluorosulfur chloride (SF_5Cl) and acetylene.² The overall yield for this sequence is only 11%. Since SF_5Br has been under study in our laboratories, an attempt was made to prepare SF_5C —CH in higher yields by the following sequence of reactions.

-- - -

$$SF_5Br + HC = CH \xrightarrow{S7 \circ C} SF_5CH = CHBr = 80\%$$
(1)

$$SF_5CH \longrightarrow CHBr \longrightarrow SF_5CHBrCHBr_2 46\%$$
(2)

$$SF_{5}CHBrCHBr_{2} \xrightarrow{K_{2}CO_{3}, 25 \circ C} SF_{5} \xrightarrow{Br} H \xrightarrow{SF_{5}} H \xrightarrow{F} SF_{5} \xrightarrow{H} SF_{5} \xrightarrow{H} SF_{5} \xrightarrow{F} SF$$

*To whom correspondence should be addressed: G.L.G., Portland State University; J.M.S., University of Idaho.

Because of the unexpected low yields of reactions 2 and 3, the overall yield was only 9%. It is thought that the yields for reactions 2 and 3 could be improved, but it was found, unexpectedly, that direct dehydrobromination of SF_5CH —CHBr gave the acetylene in yields of ~50%.

$$SF_5CH = CHBr \xrightarrow{KOH} SF_5C \equiv CH$$
 (5)

Attempts to dehydrohalogenate $SF_5CH=CHCl$ were found to be ineffective and gave a yield of only 1-2% of the desired SF_5 alkyne. The compounds synthesized in reactions 1-3 are new and have been characterized by elemental and spectral analyses.

The common feature of these new compounds and $SF_5C=CH$ is the presence of the SF_5 group. For the compounds reported in this paper, absorption bands in the 845–928-cm⁻¹ region are assigned to S—F stretching vibrations. The S—F deformation modes are found near or at 600 cm^{-1.4} The infrared spectra of $SF_5CH=CHBr$ and $SF_5C=CH$ contain the characteristic absorption band of the olefinic C=C or acetylenic C=C stretching vibration at 1611 or 2118 cm⁻¹, respectively. For $SF_5CH=$ $C(Br)SF_5$, $SF_5CH=C(CF_3)Br$, and $CF_3C=CH$, the C=C/C=C absorption bands are found at 1610, 1630, and 2165 cm⁻¹, respectively.^{3,5,6} The C—H stretching vibrations for $SF_5CH=C$

- Hoover, F. W.; Coffman, D. D. J. Org. Chem. 1964, 29, 3567.
 Berry, A. D.; De Marco, R. A.; Fox, W. B. J. Am. Chem. Soc. 1979,
- 101, 737.
- (4) Cross, L. H.; Cushing, G.; Roberts, H. L. Spectrochim. Acta 1961, 17, 344.
- (5) Wang, Q. C.; White, H. F.; Gard, G. L. J. Fluorine Chem. 1979, 13, 455.

See, for example: Gard, G. L.; Woolf, C. W. U.S. Patent 3448 121, 1969. Gard, G. L.; Bach, J.; Woolf, C. W. British Patent 1167 112, 1969. Gilbert, E. E.; Gard, G. L. U.S. Patent 3475 453, 1969. Banks, R. E.; Haszeldine, R. N. British Patent 1145 263. Michimasa, Y. Chem. Abstr. 1975, 82, 175255g. Sheppard, W. A. U.S. Patent 3219 690, 1965.

HBr, SF₅CBr=CHBr, SF₅CHBrCHBr₂, and SF₅C=CH are located at 3115, 3100, 3022, and 3338 cm⁻¹, respectively. These values are in excellent agreement with similar molecular systems already mentioned.^{3,5,6} The C-Br stretching bands in the infrared spectra for fluoroalkyl bromides⁷ are reported to be in the 740-770-cm⁻¹ range, while for alkyl bromides⁸ the range is 515-680 cm⁻¹. For the new compounds described in this paper, the bands in the 774-659-cm⁻¹ region may well be due to the C-Br stretching mode.

It should be noted that the stretching frequency for the triple bond in monosubstituted acetylenes, XC==CH, depends, to some degree, on the nature of the substituent and its corresponding electronegativity; for example, in the series^{6,9-11} FC=CH, (C- $F_3)_2NC = CH, CF_3C = CH, SF_5C = CH, ClC = CH, BrC = CH,$ and IC=CH, ν (C=C) is observed at 2255, 2183, 2165, 2118, 2110, 2085, and 2075 cm⁻¹, respectively. This is in agreement with the general order of electronegativity as reported for these substituents. On the basis of the above series, the electronegativity of the SF₅ group is approximately the same as that of chlorine. A previous study with polyfluoroiodides agrees with this conclusion.12

For SF₅C=CH, the proton NMR spectrum is a pentet (J_{F-H}) = 3 Hz) at δ 2.25.² As expected, the acetylenic proton in SF₅- $C \equiv CH(1)$ resonates at a more shielded position. The fact that it appears as a pentet suggests that it is only coupled significantly to the equatorial fluorine atoms (F_B) .

Of particular interest are the ¹⁹F NMR spectral studies for which the AB₄ pattern found for the SF, group in SF₅C==CH is reversed from that found for ethylenes and saturated hydrocarbons/fluorocarbons that contain the SF5 group. This behavior is observed also for other SF_5 acetylenic systems.¹³ This result can be explained by considering the nature of the anisotropic geometry of the acetylene function. The axial fluorine atom (F_A) is located in the region of maximum shielding while the equatorial fluorine atoms (F_B) are situated in the deshielding region relative to the acetylenic bond. In 1, the axial fluorine atom resonates at ϕ 72 and the equatorial fluorine atoms resonate at ϕ 80. These values for SF5C=CH are compared with the chemical shifts for the axial S-F values of 80, 77, 77, 76, 80, and 77 ppm and corresponding equatorial SF₄ values of 66, 71, 69, 68, 66, and 68 ppm in the various saturated analogues¹⁴⁻¹⁶ SF₅CH₂CHFBr, SF₅CH₂CF₂Br, SF₅CH₂CF₂Cl, SF₅CH₂SF₅, SF₅CH₂CHBr(CF₃), and SF₅CH₂CHClBr. Thus, the transformation of F₅S---CH₂to F_5S —C=CH causes a shielding of 4-8 ppm for the axial fluorine atom while for the equatorial fluorine atoms a deshielding of 9-14 ppm results. It should be noted, that in $SF_5C \equiv CSF_5$, the equatorial fluorine atoms are found at 80 ppm while the axial fluorine atoms are at 67 ppm.³ This shows additional shielding for the axial fluorine atoms when compared to that in $SF_5C = CH$. Also, the hybridization change in the carbon to which the SF₅

(6) Berney, C. V.; Cousins, L. R.; Miller, F. A. Spectrochim. Acta 1963, 19, 2019.

- Haszeldine, R. N. Nature (London) 1951, 168, 1028.
- Mortimer, F. S.; Blodgett, R. D.; Daniels, F. J. Am. Chem. Soc. 1947, (8)69, 822
- (9) Hunt, G. R.; Wilson, M. K. J. Chem. Phys. 1961, 34, 1301.
- (10) Freear, J.; Tipping, A. E. J. Chem. Soc. C 1968, 1096.
 (11) Brown, J. K.; Tyler, J. K. Proc. Chem. Soc., London 1961, 13.
- Gard, G. L.; Woolf, C. J. Fluorine Chem. 1971/1972, 1, 487.
- (13) Kovacina, A.; De Marco, R. A.; Snow, A. W. J. Fluorine Chem. 1982, 21.261
- (14) Steward, J.; Kegley, L.; White, H. F.; Gard, G. L. J. Org. Chem. 1969, 34, 760.
- (15)
- De Marco, R. A.; Fox, W. B. J. Fluorine Chem. 1978, 12, 137. Mir, Q. C.; DeBuhr, R.; Haug, C.; White, H. F.; Gard, G. L. J. Fluorine (16)Chem. 1980, 16, 373.

group is bonded will cause a general, electronegativity-controlled deshielding of both the axial and equatorial fluorine atoms. Thus, the major factors influencing the chemical shifts of the fluorine atoms in 1 are the anisotropic effects and the hybridization state of the carbon.

The proton NMR peaks for monosubstituted acetylenes, XC=CH, are shifted to high field owing to the diamagnetic anisotropy. Apart from such effects, it is anticipated that a relatively strong deshielding should result if the substituent X withdraws electrons from the π system. Such a deshielding effect does occur in a series of alkyl- and silylacetylenes.¹⁷ It is expected that with more electronegative groups, such as CF_3 , $(CF_3)_2N$, and SF₅, electron withdrawal from the π system and increased deshielding will be noted.

By using available data,¹⁸ we see that the proton in $CF_3C = CH$ is downfield from CH₃C≡CH by 0.6 ppm. Coupling this information with the reported values for $(CF_3)_2NC=CH, SF_5C=$ CH, and some alkyl- and silylacetylenes, we observe an increase in shielding from CF₃ to CH₂SiR₃ for the acetylenic hydrogen atom in XC≡CH.

Х	$(CF_3)_2N$	CF_3	SF₅	SiR ₃	CH_3	CR3	CH_2SiR_3
τ	7.25	7.38	7.75	7 .7 6	7.98	8.08	8.45

The same chemical shifts for \equiv CH when the substituent is SF, or SiR₃ must arise from Si \leftarrow C_{π} back-bonding with inductive polarization of the SiR₃ group in comparison with the electronwithdrawing effect of the SF₅ group.

Experimental Section

Materials. The compounds used in this work were obtained from commercial sources: HC=CH (Airco); dry diglyme, Zn, K₂CO₃, (C-H₃)₂C=O (Mallinckrodt, AR); KOH, Br₂ (J. T. Baker). All reagents were used without further purification. SF₅Br was synthesized by literature methods.14

General Procedure. Gases were manipulated in a conventional Pyrex vacuum apparatus equipped with a Heise Bourdon tube gauge and a Televac thermocouple gauge. Infrared spectra were obtained by using an 8.25-cm Monel cell with KBr or KRS-5 windows or as solids between KBr, KRS-5, or NaCl disks on a Perkin-Elmer 476 spectrometer. The spectra were calibrated with a polystyrene film. The NMR spectra were recorded with a Varian Model EM-390 spectrometer operating at 90.0 MHz for proton and 84.67 MHz for fluorine resonances. Tetramethylsilane and trichlorofluoromethane were used as internal standards. The mass spectra were taken with a Hitachi Perkin-Elmer RMU-6E mass spectrometer operating at 15 eV. Perfluorokerosene (PFK) was used as an internal standard. Elemental analyses were obtained by Beller Microanalytical Laboratory, Göttingen, West Germany.

Preparation of SF₅CH=CHBr. To a 150-mL stainless steel vessel equipped with a Whitey (20-VF4) stainless steel valve were added 27.5 mmol of SF₅Br and 38.5 mmol of HC=CH. The reaction mixture was maintained at 57 \pm 2 °C (3.8 days). The product, 22.0 mmol of SF₅C-H=CHBr, was formed in 80% yield; bp 86 \pm 2 °C

The infrared spectrum of the liquid had the following bands (cm⁻¹): 3115 (wm), 1692 (w), 1611 (m), 1545 (w), 1385 (vw), 1275 (w), 1197 (wm), 1161 (w), 912 (s), 845 (vs, b with sh at 900), 774 (m), 705 (m), 680 (vw), 625 (m), 601 (ms), and 571 (m). The $^{19}\mathrm{F}$ NMR spectrum contained a complex doublet at ϕ 63.3 (SF₄) and a multiplet (nine-line pattern) at ϕ 78.7 (SF) (peak areas 4.1 (SF₄) and 1.0 (SF); coupling constants $J_{\text{F-SF4}} = 150.4$ Hz and $J_{\text{SF4-CH}} = 5.64$ Hz). The ¹H NMR spectrum was a multiplet with the band centered at δ 6.8. The mass spectrum for SF₅CH=CHBr (15 eV) had the following m/e peaks: 232, 234, (SF₅C₂H₂^{79,81}Br)⁺; 215, 213, (SF₄C₂H₂^{79,81}Br)⁺; 153, (SF₅C₂H₂)⁺; 127, (SF₅)⁺; 107, 105, (C₂H₂^{79,81}Br)⁺; 106, 104, (C₂H^{79,81}Br)⁺; 89, (SF₃)⁺; 44, (SC)⁺. Anal. Calcd: C, 10.31; H, 0.87; F, 40.8. Found: C, 10.50; H, 0.89; F, 39.4.

Preparation of SF₅CHBrCHBr₂. To a 390-mL quartz-Pyrex vessel equipped with a Kontes Teflon valve and Teflon stirring bar were added 64.8 mmol of SF₅CH=CHBr and 63.9 mmol of Br₂. The bottom portion of the vessel was placed in a water bath at room temperature while the upper half of the vessel was irradiated (17 h) with a 250-W General Electric reflector UV lamp. The product, 29.7 mmol of SF₅CHBrCHBr₂,

(18)Beisner, H. M.; Brown, L. C.; Williams, D. J. Mol. Spectrosc. 1961, 7, 385.

⁽¹⁷⁾ Bock, H.; Seidl, H. J. Chem. Soc. B 1968, 1158.

was formed in 46% yield; bp 109 ± 1 °C (50 mmHg).

The infrared spectrum of the liquid had the following bands (cm⁻¹): 3022 (m), 2997 (m), 1386 (vw), 1249 (wm), 1188 (w), 1148 (m), 1015 (mw), 850 (vs, b), 758 (ms), 730 (m), 664 (m), 610 (m), 585 (s, sh, at 574), 561 (ms), 504 (m). The ¹⁹F NMR spectrum (AB₄) contained a complex doublet at ϕ 57.0 (SF₄) and a multiplet (nine-line pattern) at ϕ 74.6 (SF). The relative peak areas were 4.0 (SF₄) and 1.0 (SF). The ¹H NMR spectrum contained a doublet at δ 6.29 (band center) and a 20-line multiplet with a band center at δ 5.86 (peak areas 1.0 (SF₅C-H) and 1.0 (Br₂C-H); coupling constants $J_{SF_4-F} = 147$ Hz, $J_{SF_4-CH} = 5.2$ Hz, $J_{SF-CH} = 0.45$ Hz, and $J_{CH-CH} = 1.4$ Hz). The mass spectrum for $S_{F-CH} = 0.9172$, and $S_{CH-CH} = 1.412$). The mass spectrum for SF₅CHBrCHBr₂ (70 eV) had the following *m/e* peaks: 396, 394, 392, 390, (SF₅C₂H₂^{79,81}Br₃)⁺; 315, 313, 311, (SF₅C₂H₂^{79,81}Br₂)⁺; 269, 267, 265, 263, (C₂H₂^{79,81}Br₃)⁺; 203, 205, 207, (SF₅C₂H₂^{79,81}Br₂)⁺; 188, 186, 184, (C₂H₂^{79,81}Br₂)⁺; 127, (SF₅)⁺; 107, 105, (C₂H₂^{79,81}Br₂)⁺; 188, 186, 184, (C₂H₂^{79,81}Br₂)⁺; 127, (SF₅)⁺; 107, 105, (C₂H₂^{79,81}Br₂)⁺; 89, (SF₃)⁺; 79, 81, (Br)⁺; 70, (SF₂)⁺; 45, (SCH)⁺; 44, (SC)⁺; 32, (S)⁺. Anal. Calcd: C, 6.12; H, 0.51; F, 24.2. Found: C, 6.27; H, 0.59; F, 24.2.

Preparation of SF₅CBr=CHBr. To a 25-mL round-bottomed vessel equipped with a Teflon stirring bar were added 15.1 mmol of SF5CH-BrCHBr₂, 15.4 mmol of K₂CO₃, and 10.0 mL of acetone. The mixture was stirred for 4 h and filtered, and the filtrate was distilled. The product, 5.50 mmol of SF5CBr=CHBr, was formed in 36% yield; bp 55 \pm 1 °C (48 mmHg).

The infrared spectrum of the liquid had the following bands (cm^{-1}) ; 3149 (w), 3100 (mw), 1573 (m), 1253 (w), 1244 (w), 916 (s with sh at 928), 860 (vs, b), 814 (s), 760 (vw), 716 (m), 679 (w), 659 (m), 600 (m), 584 (m), 539 (mw), 527 (vw), 480 (w). The ¹⁹F NMR spectrum (AB₄) contained a doublet of multiplets at ϕ 62.0 (SF₄) and a multiplet at ϕ 76.0 (SF) (peak areas 3.9 (SF₄) and 1.0 (SF)). The ¹H NMR spectrum showed a singlet at δ 7.83 and a pentet at δ 7.07 (coupling constants $J_{SF_{a-F}}$ = 149 Hz and J_{SF_4-CH} = 3.0 Hz). The following two isomers are present:

This assignment is based on the greater coupling expected for trans nuclei

relative to that for cis groups. This is analogous to the assignments made for the similar dichloro isomers.² The mass spectrum for SF₅CBr=CH-Br (70 eV) had the following m/e peaks: 314, 312, 310, (SF₅C₂H^{79,81}Br₂)⁺; 233, 231, (SF₅C₂H^{79,81}Br)⁺; 187, 185, 183, (C₂H^{79,81}Br₂)⁺; 127, (SF₅)⁺; 106, 104, (C₂H₂^{79,81}Br)⁺; 89, (SF₃)⁺; 79, 81, (Br)⁺; 70, (SF₂)⁺; 45, (SCH)⁺; 44, (SC)⁺; 32, (S)⁺. Anal. Calcd: C, 7.70; H, 0.32; F, 30.5. Found: C, 7.96; H, 0.35; F, 30.1. Branching SE Conception SE Conception

Preparation of SF₅C=CH from SF₅CBr=CHBr. A three-necked round-bottomed Pyrex vessel, equipped with a Teflon stirring bar, a separatory funnel, a nitrogen-inlet tube, and a reflux condenser that was connected to a trap cooled to -78 °C (or -196 °C) and protected from the atmosphere by a mercury bubbler, was used for the debromination reaction. To this vessel were added 20 mL of diglyme and 33.0 mmol of zinc. The mixture was heated to 140 °C, and 8.97 mmol of SF5C-Br=CHBr was added over a 0.5-h period. Heating at 140 °C was continued for 1 h under a slow nitrogen flow. The product, 6.05 mmol of SF₅C=CH, was formed in 67% yield. The infrared spectrum agreed with that previously reported.²

Preparation of SF₅C=CH from SF₅CH=CHBr. In the reaction vessel used for the debromination of SF₅CBr=CHBr, 80 mL of petroleum ether (90-120 °C fraction) was heated to reflux, and 205 mmol of KOH was added. SF₅CH==CHBr (85.8 mmol) was added slowly over a period of 0.8 h, and 305 mmol of additional KOH was added during this period. The mixture was heated at reflux for 2 h under a slow nitrogen flow. The product, 42.0 mmol of SF₅C=CH, was collected in a trap cooled to -196 ^oC (yield 49%).

The infrared spectrum had the following bands (cm⁻¹); 3338 (ms), 2118 (m), 1613 (vw), 1506 (vw), 1344 (w with sh at 1338), 893 (vs, b), 730 (w), 720 (w), 674 (ms), 620 (m), 590 (ms). ¹⁹F NMR spectrum: ϕ 71.8 (SF), ϕ 80.3 (SF₄) (multiplets; $J_{SF_4-F} = 151.8$ Hz). ¹H NMR spectrum: δ 2.76 (pentet; $J_{F-H} = 3.15$ Hz).

Acknowledgment. We express our appreciation to the National Science Foundation (Grant CHE-8404974) and the Gas Research Institute (Grant 5082-260-0654) for support of this research. We thank Dr. Gary D. Knerr for the mass spectra.

Registry No. SF₅CH=CHBr, 58636-82-1; SF₅Br, 15607-89-3; HC=CH, 74-86-2; SF₅CHBrCHBr₂, 87224-28-0; (E)-SF₅CBr=CHBr, 98050-05-6; (Z)-SF₅CBr=CHBr, 98103-43-6; SF₅C=CH, 917-89-5.

> Contribution from the Department of Chemistry, University of Rajasthan, Jaipur, India

Kinetics and Mechanism of the Uncatalyzed and Silver(I)-Catalyzed Oxidation of Hydrazine with Peroxodiphosphate in Acetate Buffers

ABHAY K. GUPTA, KRISHNA S. GUPTA, and YUGUL K. GUPTA*

Received September 12, 1984

A kinetic study of the title reaction (i) was made in acetate buffers by estimating peroxodiphosphate (pdp) iodometrically. Silver(I) 21

$$H_n P_2 O_8^{n-4} + N_2 H_5^+ \to 4 H_2 P O_4^- + N_2 + (2n-3) H^+$$
(i)

catalysis occurs through its complexation with pdp or $N_2H_5^+$. The empirical rate law (ii) holds where K_3 is the acid dissociation

$$-d[pdp]/dt = k_{uncat}[pdp][N_2H_5^+] + \frac{(A + B[^{-}O_2CCH_3])[Ag(I)][pdp][N_2H_5^+]}{([H^+] + K_3)(1 + K[^{-}O_2CCH_3])}$$
(ii)

constant of $H_2P_2O_8^{2-}$ and K is the complex formation constant of $Ag(O_2CCH_3)$. A and B are complex rate constants equal to $3.0 \times 10^{-4} \text{ M}^{-1} \text{ s}^{-1}$ and $1.5 \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$, respectively, at 40 °C and I = 1.0 M. K₃ was found to be $4.4 \times 10^{-5} \text{ M}$ under the same conditions. k_{uncat} is the second-order rate constant for the uncatalyzed reaction and is given by (iii) where k_1' and k_2' are

$$k_{\text{uncat}} = (k_1'[\text{H}^+] + k_2'K_3) / ([\text{H}^+] + K_3)$$
(iii)

the rate constants for the $(H_2P_2O_8^{2-} + N_2H_5^+)$ and $(HP_2O_8^{3-} + N_2H_5^+)$ reactions and were found to be 2.25 × 10⁻³ M⁻¹ s⁻¹ and $7.5 \times 10^{-3} \text{ M}^{-1} \text{ s}^{-1}$, respectively, at 40 °C and I = 1.0 M.

We reported¹ silver(I)-catalyzed oxidation of water with peroxodiphosphate (pdp) as a sequel to the study of the mechanism of silver(I) catalysis in pdp oxidations. A few investigations^{2,3} in our laboratory have revealed that there is no kinetic evidence

- (1) Gupta, A. K.; Gupta, K. S.; Gupta, Y. K. J. Chem. Soc., Dalton Trans. 1982, 1845
- (2)Gupta, B.; Gupta, K. S.; Gupta, Y. K. J. Chem. Soc., Dalton Trans. 1984. 1873

(3) Gupta, B.; Gupta, K. S.; Gupta, Y. K., unpublished work.

for a Ag(I)/Ag(II) cycle in Ag(I)-catalyzed reactions. A complex of Ag(I) with either the oxidant or reductant appears to be more reactive. This mechanism is different from that found in per-oxodisulfate (pds) oxidations.⁴ We thought a few more reactions should be investigated to substantiate the above conclusion about the mechanism.

Toward this aim, hydrazine appeared to be an attractive choice, not only because the reaction of hydrazine and higher valent silver

(4) House, D. A. Chem. Rev. 1962, 62, 185.